Luigi Galvani (b. Sept. 9, 1737, Bologna, Papal States [Italy]--d. Dec. 4, 1798, Bologna, Cisalpine Republic),
Italian physician and physicist who investigated the nature and effects of what he conceived to be electricity
in animal tissue. His discoveries led to the invention of the voltaic pile, a kind of battery that makes possible
a constant source of current electricity.
Galvani followed his father's preference for medicine by attending the University of Bologna, graduating in 1759.
On obtaining the doctor of medicine degree, with a thesis (1762) De ossibus on the formation and development of
bones, he was appointed lecturer in anatomy at the University of Bologna and professor of obstetrics at the separate
Institute of Arts and Sciences.
In 1762, also, he married Lucia, the only daughter of Professor Galeazzi of the Bologna Academy of Science, of
which Galvani became president in 1772. Beginning with his doctoral thesis, his early research was in comparative
anatomy--such as the structure of renal tubules, nasal mucosa, and the middle ear--with a tendency toward physiology,
a direction appropriate to the later work for which he is noted.
Galvani's developing interest was indicated by his lectures on the anatomy of the frog in 1773 and in electrophysiology
in the late 1770s, when, following the acquisition of an electrostatic machine (a large device for making sparks)
and a Leyden jar (a device used to store static electricity), he began to experiment with muscular stimulation
by electrical means.
His notebooks indicate that, from the early 1780s, animal electricity remained his major field of investigation.
Numerous ingenious observations and experiments have been credited to him; in 1786, for example, he obtained muscular
contraction in a frog by touching its nerves with a pair of scissors during an electrical storm. Again, a visitor
to his laboratory caused the legs of a skinned frog to kick when a scalpel touched a lumbar nerve of the animal
while an electrical machine was activated.
Galvani assured himself by further experiments that the twitching was, in fact, related to the electrical action.
He also elicited twitching without the aid of the electrostatic machine by pressing a copper hook into a frog's
spinal cord and hanging the hook on an iron railing. Although twitching could occur during a lightning storm or
with the aid of an electrostatic machine, it also occurred with only a metallic contact between leg muscles and
nerves leading to them. A metallic arc connecting the two tissues could therefore be a substitute for the electrostatic
machine.
Galvani delayed the announcement of his findings until 1791, when he published his essay De Viribus Electricitatis
in Motu Musculari Commentarius (Commentary on the Effect of Electricity on Muscular Motion). He concluded that
animal tissue contained a heretofore neglected innate, vital force, which he termed "animal electricity,"
which activated nerve and muscle when spanned by metal probes.
He believed that this new force was a form of electricity in addition to the "natural" form that is produced
by lightning or by the electric eel and torpedo ray and to the "artificial" form that is produced by
friction (i.e., static electricity). He considered the brain to be the most important organ for the secretion of
this "electric fluid" and the nerves to be conductors of the fluid to the nerve and muscle, the tissues
of which act as did the outer and inner surfaces of the Leyden jar. The flow of this electric fluid provided a
stimulus for the irritable muscle fibres, according to his explanation.
Galvani's scientific colleagues generally accepted his views, but Alessandro Volta, the outstanding professor of
physics at the University of Pavia, was not convinced by the analogy between the muscle and the Leyden jar. Deciding
that the frog's legs served only as an indicating electroscope, he held that the contact of dissimilar metals was
the true source of stimulation; he referred to the electricity so generated as "metallic electricity"
and decided that the muscle, by contracting when touched by metal, resembled the action of an electroscope.
Furthermore, Volta said that, if two dissimilar metals in contact both touched a muscle, agitation would also occur
and increase with the dissimilarity of the metals. Thus Volta rejected the idea of an "animal electric fluid,"
replying that the frog's legs responded to differences in metal temper, composition, and bulk.
Galvani refuted this by obtaining muscular action with two pieces of the same material. But the ensuing controversy
was without personal animosity; Galvani's gentle nature and Volta's high principles precluded any harshness between
them. Volta, who coined the term galvanism, said of Galvani's work that "it contains one of the most beautiful
and most surprising discoveries." Nevertheless, partisan groups rallied to both sides.
In retrospect, Galvani and Volta are both seen to have been partly right and partly wrong. Galvani was correct
in attributing muscular contractions to an electrical stimulus but wrong in identifying it as an "animal electricity."
Volta correctly denied the existence of an "animal electricity" but was wrong in implying that every
electrophysiological effect requires two different metals as sources of current.
Galvani, shrinking from the controversy over his discovery, continued his work as teacher, obstetrician, and surgeon,
treating both wealthy and needy without regard to fee.
In 1794 he offered a defense of his position in an anonymous book, Dell'uso e dell'attività dell'arco conduttore
nella contrazione dei muscoli ("On the Use and Activity of the Conductive Arch in the Contraction of Muscles"),
the supplement of which described muscular contraction without the need of any metal. He caused a muscle to contract
by touching the exposed muscle of one frog with a nerve of another and thus established for the first time that
bioelectric forces exist within living tissue.
On June 30, 1790, Galvani's devoted wife and companion died, childless, at the age of 47. In the last years of
his life, Galvani refused to swear allegiance to the new Cisalpine Republic established by Napoleon. Thereupon
he was dropped from the faculty rolls, and his salary was terminated.
Rejecting help and much saddened, he moved into the old Galvani home in which his brother was living. Soon, however,
the politicians recanted, and the professorship was again offered to Galvani without the requirement of an oath.
But the affront had cut short his days: Galvani died in the house of his birth at age 61, at a time when the world
was on the threshold of the great electrical revolution.
Galvani provided the major stimulus for Volta to discover a source of constant current electricity; this was the
voltaic pile, or a battery, with its principles of operation combined from chemistry and physics. This discovery
led to the subsequent age of electric power. Moreover, Galvani opened the way to new research in the physiology
of muscle and nerve and to the entire subject of electrophysiology.
(B.Di.)
Luigi Galvani, Opere edite ed inedite del professore Luigi Galvani (1841) and Aggiunta, ed. by Silvestro Gherardi
(1842), comprise a prime reference;
Memorie ed esperimenti inediti di Luigi Galvani (1937), Galvani's laboratory notes;
Commentary on the Effect of Electricity on Muscular Motion (1953), an English translation of Galvani's De Viribus
Electricitatis in Motu Musculari Commentarius (1791), with facsimile of the Latin text, an introduction by I. Bernard
Cohen, and an extensive bibliography;
C. Mesini, Luigi Galvani (1958), a clear and scholarly modern study (in Italian).