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he rate of success in the treatment of acute lymphoblastic

 

leukemia (ALL) has increased steadily since the 1960s. The five-year event-free
survival rate is nearly 80 percent for children with ALL and approximately 40

percent for adults (Table 1).

 

1-9

 

 If we include cases of relapsed ALL that respond well to
so-called remission retrieval therapy, the rates of cure (defined by the absence of evi-
dence of disease for at least 10 years) with the use of modern treatments are about 80
percent for children and 40 percent for adults.

 

10,11

 

 Attempts to boost cure rates further
with the use of hematopoietic stem-cell transplantation have improved the outcome for
some,

 

7,12

 

 but not all,

 

13

 

 subtypes of ALL, suggesting that intensification of existing
treatments is unlikely to raise cure rates substantially and will instead increase treat-
ment-related mortality and the risk of such life-threatening late sequelae as second
cancers. The best hope for continued progress lies in a better understanding of the
pathogenesis of ALL and the basis of resistance to chemotherapy. Here, we review cur-
rent and emerging concepts of the pathobiology of ALL, emphasizing results likely to
have the greatest influence on clinical management during the next decade.

 

primary abnormalities

 

Molecular analysis of the common genetic alterations in leukemic cells has contrib-
uted greatly to our understanding of the pathogenesis and prognosis of ALL.

 

10,14

 

 Al-
though the frequency of particular genetic subtypes differs in children and adults
(Fig. 1),

 

10,15

 

 the general mechanisms underlying the induction of ALL are similar. They
include the aberrant expression of proto-oncogenes, chromosomal translocations that
create fusion genes encoding active kinases and altered transcription factors, and hy-
perdiploidy involving more than 50 chromosomes (Fig. 1). These genetic alterations
contribute to the leukemic transformation of hematopoietic stem cells or their commit-
ted progenitors by changing cellular functions. They alter key regulatory processes by
maintaining or enhancing an unlimited capacity for self-renewal, subverting the controls
of normal proliferation, blocking differentiation, and promoting resistance to death
signals (apoptosis) (Fig. 2A).

 

16

 

Some genetic lesions primarily affect only one of these pathways, whereas others im-
pinge on more than one. An example of the latter is the t(9;22) translocation, which un-
derlies the BCR-ABL fusion protein. The proto-oncogene 

 

ABL

 

 encodes a tyrosine-spe-
cific protein kinase, whose activity is tightly regulated. By contrast, the BCR-ABL fusion
protein is a constitutive protein kinase that alters signaling pathways that control the
proliferation, survival, and self-renewal of hematopoietic stem cells.

 

17

 

 Another example
of an altered signaling pathway involves 

 

PTPN11

 

, which encodes the SHP-2 protein tyro-
sine phosphatase.

 

18

 

 Somatic missense mutations in 

 

PTPN11

 

 cause constitutive activa-
tion of SHP-2 and enhance signaling through the mitogen-associated protein (MAP)
kinase pathways, which lie downstream of growth factor receptors. 

 

PTPN11

 

 mutations

t

molecular genetic alterations
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occur in approximately 6 percent of children with
ALL.

 

18

 

 Cancers with such a mutation have no other
recognized genetic aberrations, suggesting that this
change is a novel primary abnormality.

 

chimeric transcription factors

 

Altered self-renewal and differentiation of hema-
topoietic stem cells can also result from chimeric
transcription factors, which arise from genetic trans-
locations that fuse portions of two different tran-
scription factors. These chimeric transcription fac-
tors activate diverse transcriptional cascades that,
at least in part, converge to modify the normal pat-
tern of expression of members of the important
family of 

 

HOX

 

 genes, which encode the HOX tran-
scription factors (Fig. 2B).

 

15,19

 

 The HOX transcrip-
tion factors bind to DNA and regulate genes involved
in the differentiation of both the embryo and the
hematopoietic stem cell; they are also important
in the self-renewal and proliferation of hemato-
poietic stem cells.

 

The 

 

TEL-AML1

 

 Fusion Gene

 

The t(12;21) translocation creates a fusion gene that
includes the 5' portion of 

 

TEL

 

, a member of the 

 

ETS

 

family of transcription factor genes, and almost the

entire coding region of another transcription factor
gene, 

 

AML1

 

, which encodes the 

 

a

 

 subunit of core
binding factor, a master regulator of the formation
of definitive hematopoietic stem cells.

 

20,21

 

 The chi-
meric TEL-AML1 transcription factor retains an es-
sential protein–protein interaction domain of TEL
and the DNA-binding and transcriptional regulatory
sequences of AML1 (also called CBF

 

a

 

) (Fig. 3).

 

20,21

 

TEL is required for the homing of hematopoietic
progenitor cells to the bone marrow,

 

22

 

 whereas
AML1 is the DNA-binding component of the het-
erodimeric transcription factor (CBF

 

a

 

 plus CBF

 

b

 

)
called core-binding factor, which has a central role
in hematopoiesis.

 

21,23

 

 The 

 

HOX

 

 genes probably op-
erate downstream of the transcriptional cascade
initiated by core-binding factor (Fig. 2B).

 

19,24

 

A prominent effect of the TEL-AML1 fusion pro-
tein is inhibition of the transcriptional activity that
is normally initiated when AML1 binds to a DNA re-
gion termed the core enhanced sequence

 

25

 

 (Fig.
3A). The binding of AML1 to the core enhanced se-
quence recruits other transcription factors and co-
activators to this region, and the resulting protein
complex regulates transcription. This complex in-
cludes histone acetylases, which add acetyl groups
to DNA-bound histones, thereby causing conforma-

 

* Plus–minus values are means ±SE. BFM denotes Berlin–Frankfurt–Münster, CCG Children’s Cancer Group, COALL 
Cooperative Study Group of Childhood Acute Lymphoblastic Leukemia, DFC Dana–Farber Consortium, NOPHO Nordic 
Society of Pediatric Haematology and Oncology, SJCRH St. Jude Children’s Research Hospital, GMALL German Acute 
Lymphoblastic Leukemia Study Group, MDACC M.D. Anderson Cancer Center, and UCSF University of California, San 
Francisco.

† The rate of continuous complete remission is shown; patients in whom induction therapy failed and those who died were 

 

excluded from the analysis.

 

Table 1. Results of Selected Clinical Trials in Patients with ALL.*

Patients and Study Group Years of Study
No. of 

Patients Age Range
5-Yr Event-free

Survival Reference

 

yr %

 

Children

ALL–BFM 90 1990–1995 2178 0–18 78±1.0 Schrappe et al.

 

1

 

CCG-1800 1989–1995 5121 0–21 75±1.0 Gaynon et al.

 

2

 

COALL-92 1992–1997 538 1–18 76.9±1.9 Harms and Janka-Schaub

 

3

 

DFC protocol 91-01 1991–1995 377 0–18 83±2 Silverman et al.

 

4

 

NOPHO ALL-92 1992–1998 1143 0–15 77.6±1.4 Gustafsson et al.

 

5

 

SJCRH XIII 1991–1998 412 0–18 79.4±2.3 Pui et al.

 

6

 

Adults

GMALL 02/84 1983–1987 562 15–65 39 (at 7 yr)† Gökbuget and Hoelzer

 

7

 

MDACC 1992–1998 204 16–79 38† Kantarjian et al.

 

8

 

UCSF 8707 1987–1998 84 16–59 48±13 Linker et al.

 

9
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Figure 1. Estimated Frequency of Specific Genotypes of ALL in Children and Adults.

 

Data were modified from Pui and Evans

 

10

 

 to include recently described T-cell genotypes.

 

15

 

 The genetic lesions that are 
exclusively seen in cases of T-cell–lineage leukemias are indicated in purple. All other genetic subtypes are either exclu-
sively or primarily seen in cases of B-cell–lineage ALL.
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tional changes in chromatin that enhance the tran-
scription of target genes. Like AML1, the abnormal
TEL-AML1 fusion protein can bind to the core en-
hanced sequence, but instead of activating tran-
scription, it recruits histone deacetylases, which in-
duce closure of the chromatin structure and, hence,
inhibition of transcription (Fig. 3B). These changes
in the normal AML1-mediated transcriptional cas-
cade alter both the self-renewal capacity and the
differentiation capacity of hematopoietic stem
cells.

 

21,26

 

The conversion by chromosomal translocation
of a transcription factor from an activator to a re-
pressor of genes is a recurrent pathogenic mecha-
nism not only in ALL, but also in acute myeloid leu-
kemias that form fusion proteins containing AML1
or the retinoic acid 

 

a

 

 receptor.

 

27,28

 

 Recently de-
veloped small-molecule inhibitors of the histone

deacetylase enzymes can reverse transcriptional re-
pression by chimeric transcription factors, thereby
abolishing their oncogenic activity. Indeed, histone
deacetylase inhibitors have shown activity in pre-
clinical studies and are now in clinical trials.

 

29

 

 These
inhibitors appear to possess only limited activity
when used alone, but in combination with other
agents they could be beneficial.

 

Translocations Involving the 

 

MLL

 

 Gene

 

A second component of the 

 

HOX

 

 regulatory path-
way is the mixed-lineage leukemia (MLL) pro-
tein,

 

30,31

 

 a nuclear protein that maintains the ex-
pression of particular members of the 

 

HOX

 

 family
(Fig. 2B). Leukemia-associated translocations of

 

MLL

 

 result in chimeric proteins consisting of the
N-terminal portion of MLL fused to the C-terminal
portion of 1 of more than 40 partners. This genetic

 

Figure 2. Transformation of Hematopoietic Cells in the Pathogenesis of ALL.

 

The development of leukemia requires a hematopoietic stem cell or one of its committed progenitors to elude the nor-
mal mechanisms of homeostatic control that regulate growth-factor signaling, differentiation, apoptosis, and self-renewal 
(Panel A). A common pathway targeted by translocation-generated chimeric transcription factors, such as MLL fusion 
proteins, TEL-AML1, and E2A-PBX1, is the 

 

HOX

 

 gene–mediated transcriptional cascade (Panel B). The AML1-CBF

 

b

 

 
transcription factor complex (AML1) functions either directly or indirectly to regulate the transcription of specific mem-
bers of the 

 

HOX

 

 gene family. The MLL protein is required to maintain this transcription, whereas members of the poly-
comb group (PcG) family of proteins repress 

 

HOX

 

 gene transcription. HOX proteins, in turn, collaborate with cofactors, 
including the PBX1 protein, to induce the transcription of downstream target genes, whose products influence self-renewal, 
proliferation, and differentiation of hematopoietic stem cells and their committed progenitors. The sites of action of 
three chimeric transcription factors linked to leukemic transformation are indicated in red.
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alteration occurs in more than 80 percent of infants
with ALL and in most therapy-induced leukemias
caused by topoisomerase II inhibitors. The MLL fu-
sion proteins have a dominant gain-of-function ef-
fect that enhances their transcriptional activity. This
alteration disrupts the normal pattern of expression
of 

 

HOX

 

 genes, causing a change in the self-renewal
and growth of hematopoietic stem cells and com-
mitted progenitors. In mice, overexpression of an
MLL fusion protein in hematopoietic cells enhanc-
es the self-renewal of early hematopoietic progeni-
tors and eventually leads to leukemia.

 

32,33

 

 These ef-

fects depend on the presence of 

 

HOXA7

 

 and 

 

HOXA9

 

,
suggesting that altered expression of these specif-
ic 

 

HOX

 

 family members is necessary for leukemo-
genesis.

 

34

 

Other 

 

HOX

 

 Genes and HOX Cofactors

 

Support for a critical role of altered 

 

HOX

 

 gene ex-
pression in leukemogenesis comes from other lines
of investigation. In adult mice, forced expression
of 

 

HOXB4

 

 induced the proliferation of hematopoi-
etic stem cells,

 

35

 

 whereas enforced expression of

 

HOXA10

 

 induced leukemia directly.

 

36

 

 In humans, in-

 

Figure 3. Mechanism of Transcriptional Repression by TEL-AML1.

 

Panel A shows the structure of AML1, including its central runt homology domain (RHD), which mediates DNA binding 
and heterodimerization with core binding factor 

 

b

 

 (CBF

 

b

 

), a transcriptional activation domain (TA), and the C-terminal 
amino acids VWRPY (in single amino acid code), which mediate binding to the Groucho corepressors. AML1 binds to 
the core enhanced transcriptional regulatory sequences as a heterodimer with CBF

 

b

 

, and together they recruit a tran-
scriptional activation complex that includes proteins with histone acetyltransferase (HAT) activity. The HAT proteins 
acetylate (Ac) lysine residues in the core histones, which opens the chromatin structure and leads to transcriptional 
activation (purple arrow). Panel B shows the structure of the t(12;21)-generated TEL-AML1 fusion protein, in which the 
N-terminal helix–loop–helix (HLH) domain of TEL is fused to the nearly complete AML1 protein. An arrowhead indicates 
the site of fusion between these segments. TEL-AML1 retains its ability to bind to the core enhanced sequence and to 
form a heterodimer with CBF

 

b

 

; however, unlike the normal AML1 protein, it recruits a transcriptional corepressor com-
plex that includes proteins with histone deacetylase activity (HDAC), which remove acetyl groups from histones, result-
ing in closure of the chromatin and repression of transcription.
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creased expression of certain 

 

HOX

 

 genes and their
DNA-binding cofactor MEIS1 is a consistent find-
ing in leukemias with 

 

MLL

 

 rearrangements,

 

37

 

 in a
subgroup of T-cell ALL,

 

38

 

 and in specific subtypes
of acute myeloid leukemia.

 

39,40

 

 Another HOX DNA-
binding cofactor, PBX1, is targeted by the t(1;19)
translocation, which occurs in approximately 25
percent of cases of pre–B-cell ALL (Fig. 2B). This
translocation forms a fusion gene that encodes a
chimeric transcription factor, E2A-PBX1, which dis-
rupts both the expression of 

 

HOX

 

 genes and the tar-
gets of the E2A transcription factor.

 

41

 

 All these
findings make components of the HOX regulatory
pathway attractive targets for the development of
novel therapeutic agents. Identification of the spe-
cific molecules best suited to serve as drug targets
is likely to be a high priority in the coming years.

 

cooperative mutations

 

The oncogenic events triggered by chromosomal
rearrangements are probably insufficient by them-
selves to cause leukemia. Instead, genetic alterations
that impair differentiation, such as those described
above, probably cooperate with a second class of
mutations that alter the proliferation and survival of
hematopoietic progenitors.

 

21

 

 Although this scheme
is an oversimplification, it provides a framework for
investigating other genes in the pathogenesis of
ALL. We turn now to several genes involved in the
second type of mutations.

 

The FLT-3 Receptor

 

Overexpression of FLT-3, a receptor tyrosine ki-
nase important for the development of hemato-
poietic stem cells, occurs in cases of ALL with either

 

MLL

 

 rearrangements or hyperdiploidy involving
more than 50 chromosomes.

 

37,42

 

 Normally, the
FLT-3 ligand triggers the tyrosine kinase activity
of FLT-3,

 

43

 

 but in these subtypes of leukemia, the
kinase is constitutively turned on by activating mu-
tations, autocrine secretion of the FLT-3 ligand, or
self-activation induced by the overexpression of
FLT-3.

 

44,45

 

 Continuous signaling by the receptor
contributes to the abnormal growth of leukemic
cells, as demonstrated by the ability of small-mole-
cule inhibitors of FLT-3 to block the in vitro growth
of primary leukemic cells containing 

 

MLL

 

 rearrange-
ments.

 

44

 

 These findings, and the remarkable suc-
cess of a related tyrosine kinase inhibitor, imatinib
mesylate, in the treatment of chronic myeloid leu-
kemia,

 

46

 

 provide the impetus for clinical testing of
inhibitors of the FLT-3 receptor kinase.

 

The Retinoblastoma  Pathways

 

Another frequently altered regulatory network in
ALL consists of the interrelated pathways controlled
by the tumor suppressor retinoblastoma protein
(RB), the related proteins p130 and p107, and p53
(Fig. 4). The principal role of RB is to control entry
into the cell cycle.

 

47

 

 In its hypophosphorylated state,
RB inhibits the ability of the E2F family of transcrip-
tion factors to transcribe the genes necessary for
entry into the S phase. Mitogenic signals induce
the formation of active cyclin D–dependent kinase
complexes that together with cyclin E–Cdk2 phos-
phorylate RB, thereby abrogating its ability to in-
hibit cell proliferation (Fig. 4). The activity of cyclin
D–dependent kinases is in turn inhibited by the
INK4 proteins (p16

 

INK

 

4

 

a

 

, p15

 

INK

 

4

 

b

 

, p18

 

INK

 

4

 

c

 

, and
p19

 

INK

 

4

 

d

 

), thereby preventing the phosphorylation
of RB. Despite the rarity of inactivating mutations
or deletions of 

 

RB

 

 in ALL,

 

48

 

 functional inactivation
of the RB pathway through the deletion or epigenet-
ic silencing of 

 

P16INK4a and P15INK4b occurs in nearly
all cases of childhood T-cell ALL and in a small pro-
portion of cases of B-cell–lineage ALL.49 Alter-
ations of these inhibitors of cyclin D–dependent ki-
nase occur to a lesser extent in adult T-cell ALL.50

TP53
Like RB, the TP53 gene, which encodes the p53
transcription factor, is itself rarely altered in ALL;
however, components of the p53 pathway are fre-
quently mutated in ALL. As a tumor suppressor, p53
becomes activated in response to aberrant cellular
proliferation, DNA damage, or hypoxia. The activat-
ed p53 triggers the arrest of the cell cycle or apopto-
sis, depending on the cellular context.51 The activi-
ty of p53 is harnessed by HDM2, a protein that binds
to p53 and induces its degradation; HDM2, in turn,
is inhibited by the p14ARF tumor suppressor. Dele-
tion or transcriptional silencing of P14ARF is a fre-
quent event in ALL,52 whereas overexpression of
HDM2 or silencing of the p53 transcriptional target
p21CIP1 occurs in approximately 50 percent of cases
of ALL.53 P16INK4a and P14ARF are encoded by alter-
native reading frames in the same genetic locus.54

The high frequency of disabling homozygous dele-
tions in P16INK4a and P14ARF thus suggests that alter-
ations of the RB and p53 pathways collaborate in
the pathogenesis of ALL. The central role of these
pathways in both tumor suppression and the re-
sponse of tumor cells to chemotherapy suggests
that some components of these pathways are ra-
tional drug targets.
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sensitivity to chemotherapy
The different clinical outcomes associated with the
various subtypes of ALL can be attributed primarily
to drug sensitivity or resistance of leukemic blasts
harboring specific genetic abnormalities55,56 (Fig.
5). The unusual sensitivity of leukemic blast cells
with a hyperdiploid karyotype to chemotherapy is
an example. Although the mechanism of leukemic
transformation in hyperdiploid ALL is unknown,
patients with this abnormality have a favorable
prognosis when they are treated with antimetabo-
lite-based regimens. The exquisite sensitivity of
these cells to chemotherapy correlates with their
propensity to undergo spontaneous apoptosis when
cultured in vitro and to have higher-than-average
intracellular concentrations of methotrexate and
its active polyglutamate metabolites after in vivo

treatment.55 More than 97 percent of hyperdiploid
blasts have three or four copies of chromosome 21,
which harbors a gene encoding the transporter of
methotrexate into cells.57 The increase of this folate
transporter resulting from an increase in gene dos-
age may account in part for the excessive accumu-
lation of methotrexate polyglutamates in hyperdip-
loid leukemic cells.57

Cases of ALL expressing the TEL-AML1 fusion
protein also have a unique response to treatment.
This subtype of ALL was initially thought to be as-
sociated with a relatively good prognosis; however,
on further analysis, a favorable outcome was ob-
served only in clinical trials featuring intensive che-
motherapy, especially with asparaginase.20 Inter-
estingly, ALL cells that express TEL-AML1 are highly
sensitive to asparaginase in vitro,56 for reasons that
remain unclear.58

High-dose cytarabine has been credited with

prognostic factors

Figure 4. The Retinoblastoma (RB) and p53 Tumor-Suppressor Network.

Proliferative signals induce the expression of D-type cyclins (D1, D2, and D3), which interact with the cyclin-dependent 
kinases (Cdks) 4 and 6 to produce active enzymatic complexes that phosphorylate the RB tumor suppressor. Phosphor-
ylation of RB in turn releases E2F transcription factors to stimulate the transcription of target genes required for a cell to 
enter the S phase of the cell cycle. One of these targets is cyclin E, which forms a complex with Cdk2 and further phos-
phorylates RB, creating a positive-feedback loop. Induction of the p53 tumor suppressor either induces apoptosis or ar-
rests the cell cycle, depending on the cellular context. The p53-mediated arrest of the cell cycle results in part from the 
induction of the universal cyclin-dependent kinase inhibitor p21CIP1, which together with the cyclin-dependent kinase in-
hibitor p27CIP1, blocks the activity of cyclin E–Cdk2. The activity of p27CIP1 and p21CIP1 is normally regulated by their se-
questration into cyclin D–Cdk complexes, which are resistant to their inhibitory activity. The single INK4a or ARF 
genomic locus encodes two key regulators of the RB and p53 pathways, p16INK4a and p14ARF, respectively. Alternative 
first exons (1a and 1b) are spliced to exon 2, which is translated in alternative reading frames, resulting in the produc-
tion of two unrelated proteins from a single genomic region. The p16INK4a protein directly inhibits cyclin D–Cdk com-
plexes, whereas the p14ARF protein interacts with HDM2 and inhibits the ability of the latter protein to induce the 
degradation of p53. The other INK4 proteins, P15INK4b, P18INK4c, and P19INK4d, also inhibit cyclin D kinase complexes.
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improving the clinical outcome in infants and adults
with t(4;11)-positive ALL, which involves the MLL
gene — an advance now being tested in prospec-
tive clinical trials.59 The increased sensitivity to cy-
tarabine is apparently due to an increased level of
hENT1, which transports cytarabine across the cell
membrane.60 Whether hENT1 is a direct transcrip-
tional target of MLL or lies downstream of the tran-
scriptional activity of MLL fusion proteins is un-
clear.

Additional examples of subtype-specific ef-
fects of chemotherapy include the observation that
T-cell–lineage blast cells form significantly fewer
methotrexate polyglutamates than do B-cell–lin-
eage blast cells61 and therefore require a very high
dose of methotrexate (5 g per square meter of body-
surface area ) for an optimal response.62 ALL with
the t(1;19)/E2A-PBX1 fusion was classified as a high-
risk subtype of leukemia when treatment consist-
ed of standard antimetabolite-based regimens. The
use of intensified chemotherapy for this form of
ALL substantially improved the prognosis, so that
disease-free survival rates now approach 90 per-
cent6 (Fig. 5).

influence of age
There is a marked influence of age on the progno-
sis of certain genetic subtypes of ALL. For example,
Philadelphia chromosome–positive ALL is gener-
ally associated with a poor prognosis in adolescents
but a relatively favorable outcome in children one
to nine years old who have a low leukocyte count at
presentation12; adults with this type of ALL have
a dismal prognosis.7 Among patients with MLL-
rearranged ALL, infants younger than one year of
age fare considerably worse than older children.13

The basis for these differences may be related to
some combination of secondary genetic events, the
developmental stage of the target cell undergoing
malignant transformation, and the pharmacogenet-
ic or pharmacokinetic features of the patient (see
below).

gene-expression profiling
A relatively new technique, DNA microarrays, makes
possible the simultaneous analysis of the expres-
sion of thousands of genes and not only accurate-
ly identifies known genotypic and phenotypic sub-
types of ALL but also provides insights into their

Figure 5. Kaplan–Meier Analysis of Event-free Survival According to the Subtype of Leukemia in 467 Children with ALL 
Who Were Enrolled in Three Consecutive Treatment Protocols at St. Jude Children’s Research Hospital from 1991 to 1999.

Patients with t(1;19) leading to E2A-PBX1 fusion, hyperdiploidy involving more than 50 chromosomes, or TEL-AML1 
fusion have a favorable treatment outcome, with mean (±SE) five-year event-free survival rates of 89.5±7.3 percent, 
88.3±3.3 percent, and 87.5±4.0 percent, respectively, whereas those with t(4;11) leading to MLL-AF4 fusion and t(9;22) 
leading to BCR-ABL fusion have a dismal prognosis, with five-year event-free survival rates of 26.7±11.4 percent and 
28.6±10.8 percent, respectively. The prognosis is intermediate for patients with other B-cell–lineage ALL (83.6±3.3 
percent) and T-cell ALL (68.6±5.9 percent).
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underlying biology and responses to antileuke-
mic therapy.37,38,42,44,63

Gene-expression studies can group virtually
all cases of T-cell ALL according to multistep on-
cogenic pathways (Fig. 1): HOX11L2, LYL1 plus
LMO2, TAL1 plus LMO1 or LMO2, HOX11, and
MLL-ENL.15,38 Cases involving HOX11L2, TAL1, and
HOX11 are characterized by high levels of MYC ex-
pression and the loss of P16INK4a and P14ARF, where-
as cases involving LYL1 are characterized by high
levels of N-MYC expression and the deletion of as
yet unidentified genes on chromosomal arms 5q
and 13q.15,38 That LMO1 and LMO2 are aberrantly
expressed in association with the overexpression
of either TAL1 or LYL1 is consistent with findings in
transgenic animal models that LMO proteins act in
concert with TAL1 and other members of the basic
helix–loop–helix family of transcription factors in
the development of T-cell ALL.38

Interestingly, among 11 children who received
retrovirus-mediated gene therapy for X-linked
severe combined immunodeficiency disease, the
2 youngest patients were found to have a T-cell acute
leukemia-like syndrome in which the retrovirus vec-
tor was integrated near the promoter of the LMO2,
leading to aberrant transcription and expression of
the gene, almost three years later.64 The long laten-
cy suggests that the development of leukemia in-
volves a process of multiple mutations, and indeed,
one of the children had an acquired mutation in
TAL1.64 Gene-expression profiling has prognostic
significance in T-cell ALL. The cases involving
HOX11 and MLL-ENL have a more favorable prog-
nosis than do other subtypes.38,65 The prognostic
significance of HOX11L2 depends largely on the type
of treatment administered.38,66,67

Microarray analysis can also identify, within a
given subtype of leukemia, previously unrecog-
nized genes whose expression may have prognos-
tic significance.42 Analysis of gene-expression pro-
files, or signatures, before and after treatment with
methotrexate and mercaptopurine, alone or in com-
bination, showed that leukemic cells of different
molecular subtypes share a common pathway of
genomic response to the same treatment and that
changes in gene expression are treatment-specif-
ic.63 The predictive power of these newly identified
gene-expression signatures will require validation
in prospective clinical trials. Gene profiling has iden-
tified unique leukemia-associated markers whose
expression can be monitored by flow cytometry to
enhance our ability to detect levels of residual dis-

ease that are undetectable with the use of standard
methods.68 This new capability is important be-
cause the identification of residual disease has inde-
pendent prognostic significance and should facil-
itate early modifications in treatment.55,68 The
evolving field of proteomics should further en-
hance our understanding of the biology of ALL and
identify proteins that might serve as therapeutic
targets or biologic markers.69

in utero development of all
The concept that some cases of ALL originate in
utero comes from elegant genetic studies of iden-
tical twins with concordant leukemia70 and the
detection of leukemia-specific fusion-gene sequenc-
es or clonotypic rearrangements of the immuno-
globulin or T-cell–receptor loci in archived neona-
tal blood spots (Guthrie cards) of children in whom
leukemia subsequently developed.71,72 Exposure
to mutagens in utero may be an important initiat-
ing event in some cases, but the variable latency in
the emergence of leukemia suggests that addition-
al genetic alterations are required.

Another important insight has come from the
realization that rearrangements of the MLL gene
occur not only in most leukemias of infancy, but
also in leukemias induced by drugs that inhibit
topoisomerase II.59,73 Exposure of the fetus to sub-
stances that affect topoisomerase II could there-
fore be a leukemogenic event in leukemias with
an MLL rearrangement. A variety of natural and
synthetic compounds, including quinolone anti-
biotics, flavonoids in foods and drinks, catechins,
podophyllin resin, benzene metabolites, and even
estrogens can inhibit topoisomerase.59,72 Indeed,
a recent international epidemiologic study has im-
plicated transplacental exposure to DNA-damag-
ing drugs, a nonsteroidal antiinflammatory drug
(dipyrone), and a mosquitocidal agent, Baygon, in
the development of leukemias of infancy involving
MLL gene fusion.74 Although the leukemogenic ef-
fects of dietary, medical, and environmental expo-
sures are much weaker than those of anticancer
chemotherapy, the reduced ability of fetuses or their
mothers to detoxify such agents could enhance the
susceptibility of fetuses to ALL.55,59

age at presentation
In children with leukemia of fetal origin, the age at
presentation of overt disease varies widely and de-

molecular epidemiology
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pends on the leukemia subtype, suggesting im-
portant differences in pathogenesis. A concordance
rate approaching 100 percent and a very short la-
tency period (from a few weeks to a few months)
are typical of infant twins with the t(4;11)/MLL-AF4
chimeric gene,75 suggesting that this fusion is leu-
kemogenic by itself or could facilitate acquisition
of additional cooperating mutations to cause leu-
kemia. By contrast, the concordance rate in twins
with the TEL-AML1 fusion gene is only about 10 per-
cent, the incubation period is longer, and the pre-
senting features and outcomes are variable, indi-
cating that additional postnatal events are required
for leukemic transformation.70,75 This interpreta-
tion is supported by the presence of rare cells ex-
pressing t(12;21)/TEL-AML1 fusion transcripts in
approximately 1 percent of normal cord blood sam-
ples, a frequency 100 times the incidence of ALL
defined by this fusion transcript.76

Clearly, not all cases of childhood ALL develop
in utero, and most cases of adult ALL probably arise
over a protracted time. Studies of archived neonatal
blood spots and patterns of immunoglobulin and
T-cell antigen receptor rearrangements of leuke-
mic cells support a postnatal origin of ALL with
t(1;19)/E2A-PBX1 fusion.77 Large-scale epidemio-
logic studies are under way in the United States and
Britain to determine the role, if any, of exposure to
chemicals, viruses, bacteria, or ionizing radiation
in the genesis of ALL.75 Exposure to residential mag-
netic fields has largely been excluded as an insti-
gating factor.78

genetic polymorphisms
Detoxifying Enzymes
Although several monogenic syndromes (e.g., atax-
ia telangiectasia and the Bloom syndrome) are as-
sociated with an increased risk of ALL, they explain
only a small fraction of cases. For most leukemias,
multiple subtle genetic polymorphisms of xenobi-
otic metabolizing enzymes may interact with envi-
ronmental, dietary, maternal, and other external fac-
tors to affect the development of ALL. For example,
inactivating polymorphisms of detoxifying enzymes
(e.g., glutathione S-transferase, reduced nicotina-
mide adenine dinucleotide phosphate:quinone oxi-
doreductase) have been variously associated with
the development of ALL.79-82 However, these find-
ings need to be confirmed by larger studies with
careful attention to ethnic and geographic diversity
in the frequency of polymorphisms.

Folate-Metabolizing Enzymes
Low-penetrance polymorphisms of folate-metabo-
lizing enzymes have also been associated with the
development of ALL. First, polymorphic variants of
methylenetetrahydrofolate reductase, which cata-
lyzes the reduction of 5,10-methylenetetrahydro-
folate to 5-methyltetrahydrofolate (the predomi-
nant circulating form of folate), have been linked
to a decreased risk of adult83 and pediatric84,85 ALL.
This protective effect may be due to the greater
availability of 5,10-methylenetetrahydrofolate and
thymidine pools and to an increased fidelity of
DNA synthesis. Second, polymorphisms of two
other folate-related genes — serine hydroxymethyl-
transferase and thymidylate synthase — have been
associated with a lower risk of adult ALL.86 Third,
a role for folate pathways in susceptibility to ALL has
been suggested by an association between folate
supplementation and a reduced risk of ALL in chil-
dren,87 but this finding needs confirmation.

The genes that encode drug-metabolizing enzymes,
transporters, or drug targets (i.e., receptors or en-
zymes targeted by antileukemic drugs) can influ-
ence the efficacy and toxicity of chemotherapy88-90

(Fig. 6). For example, polymorphisms in the gene
for thiopurine methyltransferase, an enzyme that
catalyzes S-methylation (inactivation) of mercapto-
purine, render the protein susceptible to degrada-
tion.94 Approximately 10 percent of patients carry
at least one such variant allele for this gene, which
leads to the accumulation of high levels of active
metabolites of mercaptopurine (thioguanine nu-
cleotides).88 Hence, when treated with standard
doses of mercaptopurine, these patients have an
increased risk of acute hematopoietic toxic effects
(Fig. 6)95 and tend to have longer periods of leuke-
mia-free survival than do patients with two wild-
type alleles.91 Importantly, such patients are at great-
er risk for radiation-induced brain tumors96 and
chemotherapy-induced acute myeloid leukemia.97

Fortunately, it is now possible to identify these pa-
tients with the use of simple genotyping tests.98

Thymidylate synthase, an essential enzyme in
proliferating cells, is an important target of meth-
otrexate. Homozygosity for a triple tandem-repeat
polymorphism of the thymidylate synthase enhanc-
er has been associated with increased enzyme ex-
pression and an inferior outcome of treatment in

pharmacogenetics
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children with ALL (Fig. 6).93 However, this associ-
ation was not found in another study in which pa-
tients received higher doses of methotrexate, which
might have overcome the relative resistance to the

drug.99 Homozygosity for a polymorphism of meth-
ylenetetrahydrofolate reductase (substitution of
T for C at position 677) correlates with an increased
risk of oral, gastrointestinal, or hepatic adverse ef-

Figure 6. Influence of Host Germ-Line  and ALL Blast Genotypes on the Probability of Cure and of Adverse Events. 

The clinical consequences of three host polymorphisms are indicated in the panels on the left. The genotype for thiopurine methyltransferase 
(TPMT) determines whether reductions in the mercaptopurine dose are needed (top left). Patients who are heterozygous for nonfunctional 
variant alleles have intermediate TPMT activity and require lower doses of mercaptopurine than do patients who are homozygous for the wild-
type allele. Patients who are homozygous for a variant TPMT genotype have very low or undetectable TPMT activity and invariably require 
marked reductions in the dose of mercaptopurine.91 The C˚T polymorphism at position 677 in the methylenetetrahydrofolate reductase 
(MTHFR) gene affects the risk of mucositis after methotrexate therapy (center left). Patients who are homozygous for an MTHFR variant (TT) 
have a higher incidence of oral mucositis (as indicated by higher mucositis-index scores) than do those with a wild-type gene (CC).92 The re-
peat polymorphism of the enhancer region of thymidylate synthase (TS) affects the probability of event-free survival in ALL. Patients with a tri-
ple tandem-repeat polymorphism (3R/3R) have significantly higher levels of expression of TS and a poorer treatment outcome than do those 
with a double tandem-repeat polymorphism (2R/2R) or heterozygotes (2R/3R) (bottom left).93 Examples of other genes subject to common 
functional polymorphisms that may affect the clinical outcome of ALL are shown in the center of the figure for both whites and blacks: the fre-
quencies of the following are indicated by the various colors: homozygous for variant, purple; heterozygous for variant, dark pink; and ho-
mozygous for wild-type, light pink. GSTT1 denotes glutathione transferase theta 1, MDR1 multidrug resistance 1, RFC reduced folate carrier, 
CYP3A5 cytochrome P-450 3A5, NQO1 reduced nicotinamide adenine dinucleotide phosphate:quinone oxidoreductase, and CBS cystathio-
nine beta-synthase.
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fects after low-dose methotrexate92,100 and with
greater in vitro sensitivity of leukemic blasts to
methotrexate.101

Cytochrome P-450 enzymes are involved in the
activation of many anticancer drugs (e.g., epipodo-
phyllotoxins and cyclophosphamide) or their in-
activation (e.g., vincristine and glucocorticoids).88

Levels of cytochrome P-450 enzymes are directly
affected by drugs used in the supportive care of pa-
tients with leukemia. Specifically, phenytoin or phe-
nobarbital, both used for the long-term treatment
of seizures, increases the levels of these enzymes
and may adversely affect the outcome of therapy for
childhood ALL,102 whereas azole antifungal agents
(e.g., fluconazole, voriconazole, itraconazole, and
ketoconazole) inhibit these enzymes, increasing
the toxicity of vincristine.103

Progress in the molecular classification of ALL —
through use of DNA microarrays37,38,42,44 coupled
with methods to assess the functional significance
of newly discovered genes,104 or through proteo-
mic techniques69 — will almost certainly lead to
the identification of targets for specific treatments.
A clear precedent is imatinib mesylate for the treat-
ment of BCR-ABL–positive chronic myeloid leuke-
mia.46 This agent, which inhibits the BCR-ABL fu-

sion protein and other constitutively active tyrosine
kinases and which has induced transient remis-
sions of BCR-ABL–positive ALL105 and partial re-
sponses in other cancers,106 is the forerunner of a
new generation of molecularly targeted anticancer
drugs. Other potentially useful agents that are un-
der development include inhibitors of FLT-3 tyro-
sine kinases for use against leukemias character-
ized by activating mutations of this kinase44,107

and inhibitors of histone deacetylase for leukemias
such as TEL-AML1–positive ALL.29,108 Further re-
finements in the molecular classification of ALL,
together with the identification of genetic features
that affect the efficacy and toxicity of antileukemic
therapy, will afford unique opportunities to devise
treatment plans for individual patients and thus to
realize the elusive goal of cure in all patients, re-
gardless of their presenting characteristics.
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